Let K be a field of degree n and discriminant with absolute value Delta. Under the assumption of the validity of the Generalized Riemann Hypothesis, we provide a new algorithm to compute a set of generators of the class group of K and prove that the norm of the ideals in that set is <= (4 - 1/(2n)) log(2) Delta, except for a finite number of fields of degree n <= 4. For those fields, the conclusion holds with the slightly larger limit (4-1/(2n)+1/(2n(2))) log(2) Delta. When the cardinality of Cl is odd the bounds improve to (4 - 2/(3n)) log(2) Delta, again with finitely many exceptions in degree n <= 4, and to (4 - 2/(3n) + 3/(8n(2))) log(2) Delta without exceptions.

(2025). Breaking the 4 barrier for the bound of a generating set of the class group [journal article - articolo]. In MATHEMATICS OF COMPUTATION. Retrieved from https://hdl.handle.net/10446/309325

Breaking the 4 barrier for the bound of a generating set of the class group

Grenie', Loïc André Henri;
2025-01-01

Abstract

Let K be a field of degree n and discriminant with absolute value Delta. Under the assumption of the validity of the Generalized Riemann Hypothesis, we provide a new algorithm to compute a set of generators of the class group of K and prove that the norm of the ideals in that set is <= (4 - 1/(2n)) log(2) Delta, except for a finite number of fields of degree n <= 4. For those fields, the conclusion holds with the slightly larger limit (4-1/(2n)+1/(2n(2))) log(2) Delta. When the cardinality of Cl is odd the bounds improve to (4 - 2/(3n)) log(2) Delta, again with finitely many exceptions in degree n <= 4, and to (4 - 2/(3n) + 3/(8n(2))) log(2) Delta without exceptions.
articolo
2025
Grenie', Loïc André Henri; Molteni, Giuseppe
(2025). Breaking the 4 barrier for the bound of a generating set of the class group [journal article - articolo]. In MATHEMATICS OF COMPUTATION. Retrieved from https://hdl.handle.net/10446/309325
File allegato/i alla scheda:
File Dimensione del file Formato  
below-four.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 759.04 kB
Formato Adobe PDF
759.04 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/309325
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact