In cointegrating regressions, estimators and test statistics are nuisance parameter dependent. This paper addresses this problem from an identification-robust perspective. Confidence sets for the long-run coefficient (denoted β) are proposed that invert LR-tests against an unrestricted or a cointegration restricted alternative. For empirically relevant special cases, we provide analytical solutions to the inversion problem. A simulation study, imposing and relaxing strong exogeneity, analyzes our methods relative to standard Maximum Likelihood, Fully Modified and Dynamic OLS, and a stationarity-test based counterpart. In contrast with all the above, proposed methods have good size regardless of the identification status, and good power when β is identified.
Identification robust inference in cointegrating regressions
URGA, Giovanni
2014-01-01
Abstract
In cointegrating regressions, estimators and test statistics are nuisance parameter dependent. This paper addresses this problem from an identification-robust perspective. Confidence sets for the long-run coefficient (denoted β) are proposed that invert LR-tests against an unrestricted or a cointegration restricted alternative. For empirically relevant special cases, we provide analytical solutions to the inversion problem. A simulation study, imposing and relaxing strong exogeneity, analyzes our methods relative to standard Maximum Likelihood, Fully Modified and Dynamic OLS, and a stationarity-test based counterpart. In contrast with all the above, proposed methods have good size regardless of the identification status, and good power when β is identified.File | Dimensione del file | Formato | |
---|---|---|---|
Khalaf&Urga (2014, JoE).pdf
Solo gestori di archivio
Descrizione: publisher's version - versione dell'editore
Dimensione del file
521.19 kB
Formato
Adobe PDF
|
521.19 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo