In this paper we consider the numerical solution of the three-dimensional fluid–structure interaction problem in haemodynamics, in the case of real geometries, physiological data and finite elasticity vessel deformations. We study some new inexact schemes, obtained from semi-implicit approximations, which treat exactly the physical interface conditions while performing just one or few iterations for the management of the interface position and of the fluid and structure non-linearities. We show that such schemes allow to improve the efficiency while preserving the accuracy of the related exact (implicit) scheme. To do this we consider both a simple analytical test case and two real cases of clinical interest in haemodynamics. We also provide an error analysis for a simple differential model problem when a BDF method is considered for the time discretization and only few Newton iterations are performed at each temporal instant.

Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics

POZZOLI, Matteo;VERGARA, Christian
2014-01-01

Abstract

In this paper we consider the numerical solution of the three-dimensional fluid–structure interaction problem in haemodynamics, in the case of real geometries, physiological data and finite elasticity vessel deformations. We study some new inexact schemes, obtained from semi-implicit approximations, which treat exactly the physical interface conditions while performing just one or few iterations for the management of the interface position and of the fluid and structure non-linearities. We show that such schemes allow to improve the efficiency while preserving the accuracy of the related exact (implicit) scheme. To do this we consider both a simple analytical test case and two real cases of clinical interest in haemodynamics. We also provide an error analysis for a simple differential model problem when a BDF method is considered for the time discretization and only few Newton iterations are performed at each temporal instant.
journal article - articolo
2014
Nobile, Fabio; Pozzoli, Matteo; Vergara, Christian
File allegato/i alla scheda:
File Dimensione del file Formato  
1-s2.0-S0021999114003660-main.pdf

Solo gestori di archivio

Descrizione: publisher's version - versione dell'editore
Dimensione del file 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/31391
Citazioni
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact