This work proposes an unsupervised classification algorithm for curves. It extends the density based multivariate cluster approach to the functional framework. In particular, the modes of the small-ball probability are used as starting points to build the clusters. A simulation study is proposed.

(2014). Clustering for functional data [conference presentation - intervento a convegno]. Retrieved from http://hdl.handle.net/10446/31678

Clustering for functional data

2014-01-01

Abstract

This work proposes an unsupervised classification algorithm for curves. It extends the density based multivariate cluster approach to the functional framework. In particular, the modes of the small-ball probability are used as starting points to build the clusters. A simulation study is proposed.
2014
Bongiorno, E. G.; Goia, A.
File allegato/i alla scheda:
File Dimensione del file Formato  
3194-6524-1-PB.pdf

accesso aperto

Descrizione: publisher's version - versione dell'editore
Dimensione del file 413.44 kB
Formato Adobe PDF
413.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/31678
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact