In this paper, kernel-type estimators of the spatial distribution function are constructed, under non-constant trend, by first approximating the distribution at the sampled sites and then obtaining a weighted average of the resulting values. Unlike other alternatives, our proposals provide non- decreasing functions and do not require previous estimations of the indicator variogram or the trend function. However, appropriate bandwidths parameters are needed and selection of them in practice will be addressed.

(2014). Construction of probability maps under local stationarity [conference presentation - intervento a convegno]. Retrieved from http://hdl.handle.net/10446/31692

Construction of probability maps under local stationarity

2014-01-01

Abstract

In this paper, kernel-type estimators of the spatial distribution function are constructed, under non-constant trend, by first approximating the distribution at the sampled sites and then obtaining a weighted average of the resulting values. Unlike other alternatives, our proposals provide non- decreasing functions and do not require previous estimations of the indicator variogram or the trend function. However, appropriate bandwidths parameters are needed and selection of them in practice will be addressed.
2014
GARCIA SOIDAN, P.; Menezes, R.
File allegato/i alla scheda:
File Dimensione del file Formato  
3132-6585-1-PB.pdf

accesso aperto

Descrizione: publisher's version - versione dell'editore
Dimensione del file 135.17 kB
Formato Adobe PDF
135.17 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/31692
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact