In the present manuscript, an extended review on the state of the art on the experimental and numerical characterization of the fatigue behavior of Physically Vapor Deposited (PVD) and Chemically Vapor Deposited (CVD) thin hard coatings is presented. The current application and development fields of PVD and CVD treatments are analysed, focusing on the advantages granted by the adoption of these coatings for corrosion protection on various materials and components. The most recent experimental research results related to the fatigue behavior of PVD and CVD coated specimens are reported. Fatigue strength values are presented for various coating processes on different substrates, including hard steel as well as aluminium and titanium light alloys. Corrosion fatigue effects on coated specimens are presented where available, in order to evaluate the coating effectiveness in aggressive environments. An overview on the current state of development of theoretical and numerical models for the characterization of coated components and for the maximum number of cycles to failure is proposed to the reader.

An updated review of the fatigue behavior of components coated with thin hard corrosion-resistant coatings

BARAGETTI, Sergio;VILLA, Francesco
2014-01-01

Abstract

In the present manuscript, an extended review on the state of the art on the experimental and numerical characterization of the fatigue behavior of Physically Vapor Deposited (PVD) and Chemically Vapor Deposited (CVD) thin hard coatings is presented. The current application and development fields of PVD and CVD treatments are analysed, focusing on the advantages granted by the adoption of these coatings for corrosion protection on various materials and components. The most recent experimental research results related to the fatigue behavior of PVD and CVD coated specimens are reported. Fatigue strength values are presented for various coating processes on different substrates, including hard steel as well as aluminium and titanium light alloys. Corrosion fatigue effects on coated specimens are presented where available, in order to evaluate the coating effectiveness in aggressive environments. An overview on the current state of development of theoretical and numerical models for the characterization of coated components and for the maximum number of cycles to failure is proposed to the reader.
journal article - articolo
2014
Baragetti, Sergio; Villa, Francesco
File allegato/i alla scheda:
File Dimensione del file Formato  
Baragetti - Updated review of the fatigue behavior.pdf

accesso aperto

Descrizione: publisher's version - versione dell'editore
Dimensione del file 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/32208
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact