Owing to the Rosenau argument [P. Rosenau, Physical Review A, 46, 12–15, 1992], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.

(2015). On Rosenau-type approximations to fractional diffusion equations [journal article - articolo]. In COMMUNICATIONS IN MATHEMATICAL SCIENCES. Retrieved from http://hdl.handle.net/10446/41236

On Rosenau-type approximations to fractional diffusion equations

FURIOLI, Giulia Maria Dalia;
2015-04-01

Abstract

Owing to the Rosenau argument [P. Rosenau, Physical Review A, 46, 12–15, 1992], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.
articolo
apr-2015
Furioli, Giulia Maria Dalia; Pulvirenti, Ada; Terraneo, Elide; Toscani, Giuseppe
(2015). On Rosenau-type approximations to fractional diffusion equations [journal article - articolo]. In COMMUNICATIONS IN MATHEMATICAL SCIENCES. Retrieved from http://hdl.handle.net/10446/41236
File allegato/i alla scheda:
File Dimensione del file Formato  
furioli-pulvirenti-terraneo-toscani-CMS.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 361.32 kB
Formato Adobe PDF
361.32 kB Adobe PDF   Visualizza/Apri
41236 Furioli.pdf

accesso aperto

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 397.08 kB
Formato Adobe PDF
397.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/41236
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact