Owing to the Rosenau argument [P. Rosenau, Physical Review A, 46, 12–15, 1992], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.
(2015). On Rosenau-type approximations to fractional diffusion equations [journal article - articolo]. In COMMUNICATIONS IN MATHEMATICAL SCIENCES. Retrieved from http://hdl.handle.net/10446/41236
On Rosenau-type approximations to fractional diffusion equations
FURIOLI, Giulia Maria Dalia;
2015-04-01
Abstract
Owing to the Rosenau argument [P. Rosenau, Physical Review A, 46, 12–15, 1992], originally proposed to obtain a regularized version of the Chapman-Enskog expansion of hydrodynamics, we introduce a non-local linear kinetic equation which approximates a fractional diffusion equation. We then show that the solution to this approximation, apart of a rapidly vanishing in time perturbation, approaches the fundamental solution of the fractional diffusion (a Lévy stable law) at large times.File | Dimensione del file | Formato | |
---|---|---|---|
furioli-pulvirenti-terraneo-toscani-CMS.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
361.32 kB
Formato
Adobe PDF
|
361.32 kB | Adobe PDF | Visualizza/Apri |
41236 Furioli.pdf
accesso aperto
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
397.08 kB
Formato
Adobe PDF
|
397.08 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo