Quantum computation has suggested new forms of quantum logic, called quantum computational logics. In these logics well-formed formulas are supposed to denote pieces of quantum information: possible pure states of quantum systems that can store the information in question. At the same time, the logical connectives are interpreted as quantum logical gates: unitary operators that process quantum information in a reversible way, giving rise to quantum circuits. Quantum computational logics have been mainly studied as sentential logics (whose alphabet consists of atomic sentences and of logical connectives). In this article we propose a semantic characterization for a first-order epistemic quantum computational logic, whose language can express sentences like "Alice knows that everybody knows that she is pretty". One can prove that (unlike the case of logical connectives) both quantifiers and epistemic operators cannot be generally represented as (reversible) quantum logical gates. The "act of knowing" and the use of universal (or existential) assertions seem to involve some irreversible "theoretic jumps", which are similar to quantum measurements. Since all epistemic agents are characterized by specific epistemic domains (which contain all pieces of information accessible to them), the unrealistic phenomenon of logical omniscience is here avoided: knowing a given sentence does not imply knowing all its logical consequences.
A first-order epistemic quantum computational semantics with relativistic-like epistemic effects
LEPORINI, Roberto;
2016-01-01
Abstract
Quantum computation has suggested new forms of quantum logic, called quantum computational logics. In these logics well-formed formulas are supposed to denote pieces of quantum information: possible pure states of quantum systems that can store the information in question. At the same time, the logical connectives are interpreted as quantum logical gates: unitary operators that process quantum information in a reversible way, giving rise to quantum circuits. Quantum computational logics have been mainly studied as sentential logics (whose alphabet consists of atomic sentences and of logical connectives). In this article we propose a semantic characterization for a first-order epistemic quantum computational logic, whose language can express sentences like "Alice knows that everybody knows that she is pretty". One can prove that (unlike the case of logical connectives) both quantifiers and epistemic operators cannot be generally represented as (reversible) quantum logical gates. The "act of knowing" and the use of universal (or existential) assertions seem to involve some irreversible "theoretic jumps", which are similar to quantum measurements. Since all epistemic agents are characterized by specific epistemic domains (which contain all pieces of information accessible to them), the unrealistic phenomenon of logical omniscience is here avoided: knowing a given sentence does not imply knowing all its logical consequences.File | Dimensione del file | Formato | |
---|---|---|---|
A first-order epistemic quantum computational semantics with relativistic-like epistemic effects.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo