We introduce multiple hidden Markov models (MHMMs) where a multivariate categorical time series depends on a latent multivariate Markov chain. MHMMs provide an elegant framework for specifying various independence relationships between multiple discrete time processes. These independencies are interpreted as Markov properties of a mixed graph and a chain graph associated respectively to the latent and observation components of the MHMM. These Markov properties are also translated into zero restrictions on the parameters of marginal models for the transition probabilities and the distributions of observable variables given the latent states.

Multiple hidden Markov models for categorical time series

COLOMBI, Roberto;
2015-04-12

Abstract

We introduce multiple hidden Markov models (MHMMs) where a multivariate categorical time series depends on a latent multivariate Markov chain. MHMMs provide an elegant framework for specifying various independence relationships between multiple discrete time processes. These independencies are interpreted as Markov properties of a mixed graph and a chain graph associated respectively to the latent and observation components of the MHMM. These Markov properties are also translated into zero restrictions on the parameters of marginal models for the transition probabilities and the distributions of observable variables given the latent states.
journal article - articolo
Colombi, Roberto; Giordano, Sabrina
File allegato/i alla scheda:
File Dimensione del file Formato  
multiplehidden.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 538.37 kB
Formato Adobe PDF
538.37 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/56510
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact