We introduce multiple hidden Markov models (MHMMs) where a multivariate categorical time series depends on a latent multivariate Markov chain. MHMMs provide an elegant framework for specifying various independence relationships between multiple discrete time processes. These independencies are interpreted as Markov properties of a mixed graph and a chain graph associated respectively to the latent and observation components of the MHMM. These Markov properties are also translated into zero restrictions on the parameters of marginal models for the transition probabilities and the distributions of observable variables given the latent states.
Multiple hidden Markov models for categorical time series
COLOMBI, Roberto;
2015-04-12
Abstract
We introduce multiple hidden Markov models (MHMMs) where a multivariate categorical time series depends on a latent multivariate Markov chain. MHMMs provide an elegant framework for specifying various independence relationships between multiple discrete time processes. These independencies are interpreted as Markov properties of a mixed graph and a chain graph associated respectively to the latent and observation components of the MHMM. These Markov properties are also translated into zero restrictions on the parameters of marginal models for the transition probabilities and the distributions of observable variables given the latent states.File | Dimensione del file | Formato | |
---|---|---|---|
multiplehidden.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
538.37 kB
Formato
Adobe PDF
|
538.37 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo