In this paper we will discuss some features of the bi-Hamiltonian method for solving the Hamilton-Jacobi (H-J) equations by Separation of Variables, and make contact with the theory of Algebraic Complete Integrability and, specifically, with the Veselov–Novikov notion of algebro-geometric (AG) Poisson brackets. The bi-Hamiltonian method for separating the Hamilton-Jacobi equations is based on the notion of pencil of Poisson brackets and on the Gel’fand-Zakharevich (GZ) approach to integrable systems. We will herewith show how, quite naturally, GZ systems may give rise to AG Poisson brackets, together with specific recipes to solve the H-J equations. We will then show how this setting works by framing results by Veselov and Penskoi about the algebraic integrability of the Volterra lattice within the bi-Hamiltonian setting for Separation of Variables.

Gel’fand-Zakharevich systems and algebraic integrability: the Volterra Lattice revisited

PEDRONI, Marco
2005-01-01

Abstract

In this paper we will discuss some features of the bi-Hamiltonian method for solving the Hamilton-Jacobi (H-J) equations by Separation of Variables, and make contact with the theory of Algebraic Complete Integrability and, specifically, with the Veselov–Novikov notion of algebro-geometric (AG) Poisson brackets. The bi-Hamiltonian method for separating the Hamilton-Jacobi equations is based on the notion of pencil of Poisson brackets and on the Gel’fand-Zakharevich (GZ) approach to integrable systems. We will herewith show how, quite naturally, GZ systems may give rise to AG Poisson brackets, together with specific recipes to solve the H-J equations. We will then show how this setting works by framing results by Veselov and Penskoi about the algebraic integrability of the Volterra lattice within the bi-Hamiltonian setting for Separation of Variables.
2005
Falqui, Gregorio; Pedroni, Marco
File allegato/i alla scheda:
File Dimensione del file Formato  
wpDIIMM_n.6MS-2005.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 313.5 kB
Formato Adobe PDF
313.5 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/568
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact