X-ray computed tomography (CT) is well-known and widely used in the medical sector for diagnosis of various illnesses. The technique is based on the absorption (i.e. attenuation) of the ionising electromagnetic radiation by the object. The amount of energy to be absorbed depends on the density and its thickness; the transmitted radiation through the object is then compared to the incident radiation that leads to a reconstruction of attenuation coefficients versus spatial position in the object. Thus, the resulting three-dimensional slices of the object are used (a) to identify internal geometric features of objects, and (b) to distinguish between media of different densities, i.e. liquid and air/vapour. In this study, the geometry extraction capability has been applied on time-averaged cavitation pocket shapes, as well as, the capability of density differentiation measurements on Diesel fuel flows. Results appear promising and pose a challenge in providing quantitative measurements of cavitation vapour fraction inside an injection hole.
Application of cone-beam micro-CT on high-speed Diesel flows and quantitative cavitation measurements
SANTINI, Maurizio;
2015-01-01
Abstract
X-ray computed tomography (CT) is well-known and widely used in the medical sector for diagnosis of various illnesses. The technique is based on the absorption (i.e. attenuation) of the ionising electromagnetic radiation by the object. The amount of energy to be absorbed depends on the density and its thickness; the transmitted radiation through the object is then compared to the incident radiation that leads to a reconstruction of attenuation coefficients versus spatial position in the object. Thus, the resulting three-dimensional slices of the object are used (a) to identify internal geometric features of objects, and (b) to distinguish between media of different densities, i.e. liquid and air/vapour. In this study, the geometry extraction capability has been applied on time-averaged cavitation pocket shapes, as well as, the capability of density differentiation measurements on Diesel fuel flows. Results appear promising and pose a challenge in providing quantitative measurements of cavitation vapour fraction inside an injection hole.File | Dimensione del file | Formato | |
---|---|---|---|
CAV2015 IOP.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
229.46 kB
Formato
Adobe PDF
|
229.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo