The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. The relevance of the measurements for the design of n+p strip sensors is discussed.

(2015). Impact of low-dose electron irradiation on n+p silicon strip sensors [journal article - articolo]. In NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. Retrieved from http://hdl.handle.net/10446/57254

Impact of low-dose electron irradiation on n+p silicon strip sensors

Gaioni L.;Manghisoni M.;Re V.;Traversi G.;
2015-12-01

Abstract

The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate in the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. The relevance of the measurements for the design of n+p strip sensors is discussed.
articolo
dic-2015
Adam, W.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireld...espandi
(2015). Impact of low-dose electron irradiation on n+p silicon strip sensors [journal article - articolo]. In NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. Retrieved from http://hdl.handle.net/10446/57254
File allegato/i alla scheda:
File Dimensione del file Formato  
1-s2.0-S0168900215009602-main.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/57254
Citazioni
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 8
social impact