We study some extremal properties of the self-similar solutions of certain one- dimensional kinetic models of granular flows, usually known with the name of nonlinear friction equations. This analysis, inspired by some recent results on nonlinear di¤usion equations [6], allows to obtain various sharp inequalities, which can be fruitfully used to better clarify the large-time behavior of the solution density.

Sharp cooling rates in nonlinear friction equations

FURIOLI, Giulia Maria Dalia;
2016-01-01

Abstract

We study some extremal properties of the self-similar solutions of certain one- dimensional kinetic models of granular flows, usually known with the name of nonlinear friction equations. This analysis, inspired by some recent results on nonlinear di¤usion equations [6], allows to obtain various sharp inequalities, which can be fruitfully used to better clarify the large-time behavior of the solution density.
journal article - articolo
2016
Furioli, Giulia Maria Dalia; Pulvirenti, Ada; Terraneo, Elide
File allegato/i alla scheda:
File Dimensione del file Formato  
bozze-RLM_697.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 204.55 kB
Formato Adobe PDF
204.55 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/57930
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact