This paper targets the frequency domain identification of current structural modal properties under earthquake excitation. A new refined Frequency Domain Decomposition (rFDD) algorithm is implemented towards the output-only modal dynamic identification of heavy-damped frame structures, which are subjected to a wide set of strong ground motions. In fact, both seismic excitation and/or high damping values shall not fulfil traditional FDD assumptions. Despite that, with the present rFDD implementation quite limited errors in the modal parameter estimates have been achieved, including for the modal damping ratios (ranging from 1% to 10%). At first, the identification technique is formulated and explored analytically, by proving its potential effectiveness with seismic response input. Then, all strong motion modal parameters are consistently identified. As a fundamental necessary condition, synthetic response signals are adopted. These have been generated prior to dynamic identification from computed numerical seismic responses of a set of shear-type frames. The efficiency of the present original implementation is highlighted, by proving that consistent rFDD modal dynamic identification of structures at seismic input and simultaneous heavy damping looks feasible. Thus, the paper delivers a robust method for inspecting current structural modal properties of frame buildings under earthquake excitation and for observing their possible variation along experienced seismic histories.
(2017). Earthquake structural modal estimates of multi-storey frames by a refined Frequency Domain Decomposition algorithm [journal article - articolo]. In JOURNAL OF VIBRATION AND CONTROL. Retrieved from http://hdl.handle.net/10446/58005
Earthquake structural modal estimates of multi-storey frames by a refined Frequency Domain Decomposition algorithm
Pioldi, Fabio;Ferrari, Rosalba;Rizzi, Egidio
2017-01-01
Abstract
This paper targets the frequency domain identification of current structural modal properties under earthquake excitation. A new refined Frequency Domain Decomposition (rFDD) algorithm is implemented towards the output-only modal dynamic identification of heavy-damped frame structures, which are subjected to a wide set of strong ground motions. In fact, both seismic excitation and/or high damping values shall not fulfil traditional FDD assumptions. Despite that, with the present rFDD implementation quite limited errors in the modal parameter estimates have been achieved, including for the modal damping ratios (ranging from 1% to 10%). At first, the identification technique is formulated and explored analytically, by proving its potential effectiveness with seismic response input. Then, all strong motion modal parameters are consistently identified. As a fundamental necessary condition, synthetic response signals are adopted. These have been generated prior to dynamic identification from computed numerical seismic responses of a set of shear-type frames. The efficiency of the present original implementation is highlighted, by proving that consistent rFDD modal dynamic identification of structures at seismic input and simultaneous heavy damping looks feasible. Thus, the paper delivers a robust method for inspecting current structural modal properties of frame buildings under earthquake excitation and for observing their possible variation along experienced seismic histories.File | Dimensione del file | Formato | |
---|---|---|---|
Pioldi_Ferrari_Rizzi-JVC-2017_1077546315608557.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo