This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Closed-form optimum tuning formulas for passive tuned mass dampers under benchmark excitations

SALVI, Jonathan;RIZZI, Egidio
2016-01-01

Abstract

This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.
journal article - articolo
2016
Salvi, Jonathan; Rizzi, Egidio
File allegato/i alla scheda:
File Dimensione del file Formato  
SalviRizziSSS2016.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 7.18 MB
Formato Adobe PDF
7.18 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/58026
Citazioni
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact