This paper deals with a high-order accurate discontinuous finite element method for the numerical solution of the Euler equations. The method combines two key ideas which are at the basis of the finite volume and of the finite element method, the physics of wave propagation being accounted for by means of Riemann problems and accuracy being obtained by means of high-order polynomial approximations within elements. We focus our attention on two-dimensional steady-state problems and present higher order accurate (up to fourth-order) discontinuous finite element solutions on unstructured grids of triangles. In particular we show that, in the presence of curved boundaries, a meaningful high-order accurate solution can be obtained only if a corresponding high-order approximation of the geometry is employed. We present numerical solutions of classical test cases computed with linear, quadratic, and cubic elements which illustrate the versatility of the method and the importance of the boundary condition treatment. (C) 1997 Academic Press.
High-order accurate discontinuous finite element solution of the 2D Euler equations
BASSI, Francesco;
1997-01-01
Abstract
This paper deals with a high-order accurate discontinuous finite element method for the numerical solution of the Euler equations. The method combines two key ideas which are at the basis of the finite volume and of the finite element method, the physics of wave propagation being accounted for by means of Riemann problems and accuracy being obtained by means of high-order polynomial approximations within elements. We focus our attention on two-dimensional steady-state problems and present higher order accurate (up to fourth-order) discontinuous finite element solutions on unstructured grids of triangles. In particular we show that, in the presence of curved boundaries, a meaningful high-order accurate solution can be obtained only if a corresponding high-order approximation of the geometry is employed. We present numerical solutions of classical test cases computed with linear, quadratic, and cubic elements which illustrate the versatility of the method and the importance of the boundary condition treatment. (C) 1997 Academic Press.File | Dimensione del file | Formato | |
---|---|---|---|
High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo