Structure stability and electrical conductivity of La1-xSrxFe0.8Cu0.2O3-δ with x = 0.2, 0.4 were investigated both in air and in hydrogen to explore their potential applications as symmetric electrodes for solid oxide fuel cells. La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte supported symmetric fuel cells were fabricated and tested in air/hydrogen ambient in 650-800 °C temperature range achieving a maximum power density of 162 mW cm-2. To improve the cell performance, a composite electrode (70 wt% La1-xSrxFe0.8Cu0.2O3-δ -30 wt% Gd0.2Ce0.8O3-δ) was successfully evaluated both at the anode and the cathode sides decreasing the cell polarization resistance to 0.454 Ω cm2 at 800 °C and reaching a single cell maximum power density of 294 mW cm-2.

(2016). Copper-doped lanthanum ferrites for symmetric SOFCs [journal article - articolo]. In ACTA MATERIALIA. Retrieved from http://hdl.handle.net/10446/74509

Copper-doped lanthanum ferrites for symmetric SOFCs

NATALI SORA, Isabella;FELICE, Valeria;
2016-01-01

Abstract

Structure stability and electrical conductivity of La1-xSrxFe0.8Cu0.2O3-δ with x = 0.2, 0.4 were investigated both in air and in hydrogen to explore their potential applications as symmetric electrodes for solid oxide fuel cells. La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte supported symmetric fuel cells were fabricated and tested in air/hydrogen ambient in 650-800 °C temperature range achieving a maximum power density of 162 mW cm-2. To improve the cell performance, a composite electrode (70 wt% La1-xSrxFe0.8Cu0.2O3-δ -30 wt% Gd0.2Ce0.8O3-δ) was successfully evaluated both at the anode and the cathode sides decreasing the cell polarization resistance to 0.454 Ω cm2 at 800 °C and reaching a single cell maximum power density of 294 mW cm-2.
articolo
2016
Zurlo, Francesca; NATALI SORA, Isabella; Felice, Valeria; Luisetto, Igor; D'Ottavi, Cadia; Licoccia, Silvia; Di Bartolomeo, Elisabetta
(2016). Copper-doped lanthanum ferrites for symmetric SOFCs [journal article - articolo]. In ACTA MATERIALIA. Retrieved from http://hdl.handle.net/10446/74509
File allegato/i alla scheda:
File Dimensione del file Formato  
16_acta materialia_sofc.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/74509
Citazioni
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact