We propose a test for the stability over time of the covariance matrix of multivariate time series. The analysis is extended to the eigensystem to ascertain changes due to instability in the eigenvalues and/or eigenvectors. Using strong Invariance Principles and Law of Large Numbers, we normalise the CUSUM-type statistics to calculate their supremum over the whole sample. The power properties of the test versus alternative hypotheses, including also the case of breaks close to the beginning/end of sample are investigated theoretically and via simulation. We extend our theory to test for the stability of the covariance matrix of a multivariate regression model. The testing procedures are illustrated by studying the stability of the principal components of the term structure of 18 US interest rates.
(2018). Testing for instability in covariance structures [journal article - articolo]. In BERNOULLI. Retrieved from http://hdl.handle.net/10446/77761
Testing for instability in covariance structures
Trapani, Lorenzo;Urga, Giovanni
2018-01-01
Abstract
We propose a test for the stability over time of the covariance matrix of multivariate time series. The analysis is extended to the eigensystem to ascertain changes due to instability in the eigenvalues and/or eigenvectors. Using strong Invariance Principles and Law of Large Numbers, we normalise the CUSUM-type statistics to calculate their supremum over the whole sample. The power properties of the test versus alternative hypotheses, including also the case of breaks close to the beginning/end of sample are investigated theoretically and via simulation. We extend our theory to test for the stability of the covariance matrix of a multivariate regression model. The testing procedures are illustrated by studying the stability of the principal components of the term structure of 18 US interest rates.File | Dimensione del file | Formato | |
---|---|---|---|
KaoTrapaniUrga4R.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
361.35 kB
Formato
Adobe PDF
|
361.35 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo