We prove the analog of Cramér's short intervals theorem for primes in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis. Both results are uniform in the data of the underlying structure. Our approach is based mainly on the inertia property of the counting functions of primes and prime ideals.
(2017). Primes and prime ideals in short intervals [journal article - articolo]. In MATHEMATIKA. Retrieved from http://hdl.handle.net/10446/85911
Primes and prime ideals in short intervals
Grenié, Loic Andre Henri;
2017-01-01
Abstract
We prove the analog of Cramér's short intervals theorem for primes in arithmetic progressions and prime ideals, under the relevant Riemann hypothesis. Both results are uniform in the data of the underlying structure. Our approach is based mainly on the inertia property of the counting functions of primes and prime ideals.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
PrimeIdealsShortIntervals.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
267.22 kB
Formato
Adobe PDF
|
267.22 kB | Adobe PDF | Visualizza/Apri |
85911 Grenie.pdf
Open Access dal 09/02/2018
Descrizione: "This is the peer reviewed version of the following article: Primes and prime ideals in short intervals, which has been published in final form at http://dx.doi.org/10.1112/S0025579316000310
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Creative commons
Dimensione del file
224.17 kB
Formato
Adobe PDF
|
224.17 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo