Computational models are essential in order to integrate and extract knowledge from the large amount of -omics data that are increasingly being collected thanks to high-throughput technologies. Unfortunately, the definition of an appropriate mathematical model is typically inaccessible to scientists with a poor computational background, whereas expert users often lack the proficiency required for biologically grounded models. Although many efforts have been put in software packages intended to bridge the gap between the two communities, once a model is defined, the problem of simulating and analyzing it within a reasonable time still persists. We here present COSYS, a web-based infrastructure for Systems Biology that guides the user through the definition, simulation and analysis of reaction-based models, including the deterministic and stochastic description of the temporal dynamics, and the Flux Balance Analysis. In the case of computationally demanding analyses, COSYS can exploit GPU-accelerated algorithms to speed up the computation, thereby making critical tasks, as for instance an exhaustive scan of parameter values, attainable to a large audience.
(2017). COSYS: A computational infrastructure for systems biology . Retrieved from http://hdl.handle.net/10446/108454
COSYS: A computational infrastructure for systems biology
Mauri, Giancarlo;Cazzaniga, Paolo
2017-01-01
Abstract
Computational models are essential in order to integrate and extract knowledge from the large amount of -omics data that are increasingly being collected thanks to high-throughput technologies. Unfortunately, the definition of an appropriate mathematical model is typically inaccessible to scientists with a poor computational background, whereas expert users often lack the proficiency required for biologically grounded models. Although many efforts have been put in software packages intended to bridge the gap between the two communities, once a model is defined, the problem of simulating and analyzing it within a reasonable time still persists. We here present COSYS, a web-based infrastructure for Systems Biology that guides the user through the definition, simulation and analysis of reaction-based models, including the deterministic and stochastic description of the temporal dynamics, and the Flux Balance Analysis. In the case of computationally demanding analyses, COSYS can exploit GPU-accelerated algorithms to speed up the computation, thereby making critical tasks, as for instance an exhaustive scan of parameter values, attainable to a large audience.File | Dimensione del file | Formato | |
---|---|---|---|
cibb_paper_80.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
456.17 kB
Formato
Adobe PDF
|
456.17 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo