We study here the error of numerical integration on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and ad hoc definitions of function spaces on metric measure spaces. The same techniques are used to prove the existence of point distributions in metric measure spaces with small Lp discrepancy with respect to certain classes of subsets, for example, metric balls.

(2019). Discrepancy and Numerical Integration on Metric Measure Spaces [journal article - articolo]. In THE JOURNAL OF GEOMETRIC ANALYSIS. Retrieved from http://hdl.handle.net/10446/118856

Discrepancy and Numerical Integration on Metric Measure Spaces

Brandolini, Luca;Gigante, Giacomo;
2019-01-01

Abstract

We study here the error of numerical integration on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and ad hoc definitions of function spaces on metric measure spaces. The same techniques are used to prove the existence of point distributions in metric measure spaces with small Lp discrepancy with respect to certain classes of subsets, for example, metric balls.
articolo
2019
Brandolini, Luca; Chen, William W. L.; Colzani, Leonardo; Gigante, Giacomo; Travaglini, Giancarlo
(2019). Discrepancy and Numerical Integration on Metric Measure Spaces [journal article - articolo]. In THE JOURNAL OF GEOMETRIC ANALYSIS. Retrieved from http://hdl.handle.net/10446/118856
File allegato/i alla scheda:
File Dimensione del file Formato  
BCCGT_revised.pdf

Open Access dal 02/03/2019

Descrizione: This is a post-peer-review, pre-copyedit version of an article published in The Journal of Geometric Analysis. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12220-018-9993-6
Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 215.73 kB
Formato Adobe PDF
215.73 kB Adobe PDF Visualizza/Apri
s12220-018-9993-6.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 653.38 kB
Formato Adobe PDF
653.38 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/118856
Citazioni
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact