We study here the error of numerical integration on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and ad hoc definitions of function spaces on metric measure spaces. The same techniques are used to prove the existence of point distributions in metric measure spaces with small Lp discrepancy with respect to certain classes of subsets, for example, metric balls.
(2019). Discrepancy and Numerical Integration on Metric Measure Spaces [journal article - articolo]. In THE JOURNAL OF GEOMETRIC ANALYSIS. Retrieved from http://hdl.handle.net/10446/118856
Discrepancy and Numerical Integration on Metric Measure Spaces
Brandolini, Luca;Gigante, Giacomo;
2019-01-01
Abstract
We study here the error of numerical integration on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Marcinkiewicz–Zygmund inequality and ad hoc definitions of function spaces on metric measure spaces. The same techniques are used to prove the existence of point distributions in metric measure spaces with small Lp discrepancy with respect to certain classes of subsets, for example, metric balls.File | Dimensione del file | Formato | |
---|---|---|---|
BCCGT_revised.pdf
Open Access dal 02/03/2019
Descrizione: This is a post-peer-review, pre-copyedit version of an article published in The Journal of Geometric Analysis. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12220-018-9993-6
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
215.73 kB
Formato
Adobe PDF
|
215.73 kB | Adobe PDF | Visualizza/Apri |
s12220-018-9993-6.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
653.38 kB
Formato
Adobe PDF
|
653.38 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo