We produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in R^d. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.
(2018). Low-Discrepancy Sequences for Piecewise Smooth Functions on the Torus . Retrieved from http://hdl.handle.net/10446/124749
Low-Discrepancy Sequences for Piecewise Smooth Functions on the Torus
Brandolini, Luca;Gigante, Giacomo;
2018-01-01
Abstract
We produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in R^d. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
SLOAN80-055.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
94.66 kB
Formato
Adobe PDF
|
94.66 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo