We produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in R^d. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.

(2018). Low-Discrepancy Sequences for Piecewise Smooth Functions on the Torus . Retrieved from http://hdl.handle.net/10446/124749

Low-Discrepancy Sequences for Piecewise Smooth Functions on the Torus

Brandolini, Luca;Gigante, Giacomo;
2018-01-01

Abstract

We produce low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a smooth convex domain with positive curvature in R^d. The proof depends on simultaneous Diophantine approximation and on appropriate estimates of the decay of the Fourier transform of characteristic functions.
2018
Brandolini, Luca; Colzani, Leonardo; Gigante, Giacomo; Travaglini, Giancarlo
File allegato/i alla scheda:
File Dimensione del file Formato  
SLOAN80-055.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 94.66 kB
Formato Adobe PDF
94.66 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/124749
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact