This contribution describes the first results obtained within the iMPACT project, which aims to build a novel proton computed-tomography (pCT) scanner for protons of energy up to 230 MeV, as used in hadron therapy. The iMPACT pCT scanner will improve the current state-of-the-art in proton tracking at all levels: speed, spatial resolution, material budget, and cost. We will first describe the design of the iMPACT scanner, which is composed by a tracker and a range calorimeter. We will then illustrate the results of a test with the ALPIDE sensor, a monolithic active pixels sensor, developed by the ALICE collaboration, which will equip the iMPACT tracker in this first phase. We finally detail the characterization building elements of the prototype of the range calorimeter, which is composed of segmented scintillator fingers readout by SiPMs. Reported beam-test data will highlight how the technological choices we made well address the performances of a state-of-the-art pCT system.
(2018). iMPACT: An Innovative Tracker and Calorimeter for Proton Computed Tomography [journal article - articolo]. In IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES. Retrieved from http://hdl.handle.net/10446/159161
iMPACT: An Innovative Tracker and Calorimeter for Proton Computed Tomography
Mattiazzo, Serena;
2018-01-01
Abstract
This contribution describes the first results obtained within the iMPACT project, which aims to build a novel proton computed-tomography (pCT) scanner for protons of energy up to 230 MeV, as used in hadron therapy. The iMPACT pCT scanner will improve the current state-of-the-art in proton tracking at all levels: speed, spatial resolution, material budget, and cost. We will first describe the design of the iMPACT scanner, which is composed by a tracker and a range calorimeter. We will then illustrate the results of a test with the ALPIDE sensor, a monolithic active pixels sensor, developed by the ALICE collaboration, which will equip the iMPACT tracker in this first phase. We finally detail the characterization building elements of the prototype of the range calorimeter, which is composed of segmented scintillator fingers readout by SiPMs. Reported beam-test data will highlight how the technological choices we made well address the performances of a state-of-the-art pCT system.File | Dimensione del file | Formato | |
---|---|---|---|
08335784.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo