Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition approaches. In this contribution, we evaluate two computer-assisted segmentation methods, which we have already developed and validated, for uterine fibroid segmentation in MRgFUS treatments. A quantitative comparison on segmentation accuracy, in terms of area-based and distance-based metrics, was performed. The clinical feasibility of these approaches was assessed from physicians’ perspective, by proposing an integrated solution.
(2019). Computer-assisted approaches for uterine fibroid segmentation in MRgFUS treatments: Quantitative evaluation and clinical feasibility analysis . Retrieved from http://hdl.handle.net/10446/178202
Computer-assisted approaches for uterine fibroid segmentation in MRgFUS treatments: Quantitative evaluation and clinical feasibility analysis
Tangherloni A.;Mauri G.;
2019-01-01
Abstract
Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition approaches. In this contribution, we evaluate two computer-assisted segmentation methods, which we have already developed and validated, for uterine fibroid segmentation in MRgFUS treatments. A quantitative comparison on segmentation accuracy, in terms of area-based and distance-based metrics, was performed. The clinical feasibility of these approaches was assessed from physicians’ perspective, by proposing an integrated solution.File | Dimensione del file | Formato | |
---|---|---|---|
2019_Book_QuantifyingAndProcessingBiomed (1) (1).pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
356.79 kB
Formato
Adobe PDF
|
356.79 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo