We extend to the case of a d-dimensional compact connected oriented Riemannian manifold M the theorem of A. Bondarenko, D. Radchenko and M. Viazovska (Ann. of Math. (2) 178:2 (2013), 443–452) on the existence of L-designs consisting of N nodes for any N ≥ C_M L^d. For this, we need to prove a version of the Marcinkiewicz–Zygmund inequality for the gradient of diffusion polynomials.

(2021). Optimal asymptotic bounds for designs on manifolds [journal article - articolo]. In ANALYSIS & PDE. Retrieved from http://hdl.handle.net/10446/190334

Optimal asymptotic bounds for designs on manifolds

Gariboldi, Bianca;Gigante, Giacomo
2021-01-01

Abstract

We extend to the case of a d-dimensional compact connected oriented Riemannian manifold M the theorem of A. Bondarenko, D. Radchenko and M. Viazovska (Ann. of Math. (2) 178:2 (2013), 443–452) on the existence of L-designs consisting of N nodes for any N ≥ C_M L^d. For this, we need to prove a version of the Marcinkiewicz–Zygmund inequality for the gradient of diffusion polynomials.
articolo
2021
Gariboldi, Bianca Maria; Gigante, Giacomo
(2021). Optimal asymptotic bounds for designs on manifolds [journal article - articolo]. In ANALYSIS & PDE. Retrieved from http://hdl.handle.net/10446/190334
File allegato/i alla scheda:
File Dimensione del file Formato  
GG_designs_revised.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 374.69 kB
Formato Adobe PDF
374.69 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/190334
Citazioni
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 4
social impact