We present a Bayesian nonparametric group-dependent mixture model for clustering. This is achieved by building a hierarchical structure, where the discreteness of the shared base measure is exploited to cluster the data, between and within groups. We study the properties of the group-dependent clustering structure based on the latent parameters of the model. Furthermore, we obtain the joint distribution of the clustering induced by the hierarchical mixture model and define the complete posterior characterization of interest. We construct a Gibbs sampler to perform Bayesian inference and measure performances on simulated and a real data.
(2021). Group-dependent finite mixture model . Retrieved from http://hdl.handle.net/10446/194000
Group-dependent finite mixture model
Argiento, Raffaele;
2021-01-01
Abstract
We present a Bayesian nonparametric group-dependent mixture model for clustering. This is achieved by building a hierarchical structure, where the discreteness of the shared base measure is exploited to cluster the data, between and within groups. We study the properties of the group-dependent clustering structure based on the latent parameters of the model. Furthermore, we obtain the joint distribution of the clustering induced by the hierarchical mixture model and define the complete posterior characterization of interest. We construct a Gibbs sampler to perform Bayesian inference and measure performances on simulated and a real data.File | Dimensione del file | Formato | |
---|---|---|---|
Argiento1.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
724.63 kB
Formato
Adobe PDF
|
724.63 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo