This paper reports the design and experimental results from the characterization of an integrated circuit developed for the readout of the X-ray spectrometer and tracking system of the General AntiParticle Spectrometer (GAPS) balloon mission. GAPS will search for an indirect signature of dark matter through the detection of low-energy (<0.25 GeV/n) cosmic-ray antiprotons, antideuterons and antihelium nuclei. The ASIC, named SLIDER32 (32 channels Si-LI DEtector Readout ASIC), was fabricated in a 180 nm CMOS technology and is comprised of 32 analog readout channels, an 11-bit SAR ADC and a digital back-end section which is responsible for defining channel settings and for sending digital information to the data acquisition system. The core of the ASIC is a low-noise analog channel implementing a dynamic signal compression which makes the chip suitable for resolving both X-rays in the range of 20 to 100 keV and charged particles with energy deposition of up to 100 MeV. It features an energy resolution of 4 keV FWHM in the 20–100 keV range with a 40 pF detector capacitance, to clearly distinguish X-rays from antiprotonic or antideuteronic exotic atoms. The readout electronics of the ASIC will run at a temperature of about –40 °C, complying with a detector leakage current of the order of 5–10 nA per strip.

(2023). A mixed-signal processor for X-ray spectrometry and tracking in the GAPS experiment [journal article - articolo]. In NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. Retrieved from https://hdl.handle.net/10446/233871

A mixed-signal processor for X-ray spectrometry and tracking in the GAPS experiment

Re, Valerio;Ghislotti, Luca;Lazzaroni, Paolo;Manghisoni, Massimo;Riceputi, Elisa;
2023-01-01

Abstract

This paper reports the design and experimental results from the characterization of an integrated circuit developed for the readout of the X-ray spectrometer and tracking system of the General AntiParticle Spectrometer (GAPS) balloon mission. GAPS will search for an indirect signature of dark matter through the detection of low-energy (<0.25 GeV/n) cosmic-ray antiprotons, antideuterons and antihelium nuclei. The ASIC, named SLIDER32 (32 channels Si-LI DEtector Readout ASIC), was fabricated in a 180 nm CMOS technology and is comprised of 32 analog readout channels, an 11-bit SAR ADC and a digital back-end section which is responsible for defining channel settings and for sending digital information to the data acquisition system. The core of the ASIC is a low-noise analog channel implementing a dynamic signal compression which makes the chip suitable for resolving both X-rays in the range of 20 to 100 keV and charged particles with energy deposition of up to 100 MeV. It features an energy resolution of 4 keV FWHM in the 20–100 keV range with a 40 pF detector capacitance, to clearly distinguish X-rays from antiprotonic or antideuteronic exotic atoms. The readout electronics of the ASIC will run at a temperature of about –40 °C, complying with a detector leakage current of the order of 5–10 nA per strip.
articolo
2023
Re, Valerio; Ghislotti, Luca; Lazzaroni, Paolo; Manghisoni, Massimo; Riceputi, Elisa; Ratti, Lodovico; Boezio, Mirko; Zampa, Gianluigi; Fabris, Lorenzo
(2023). A mixed-signal processor for X-ray spectrometry and tracking in the GAPS experiment [journal article - articolo]. In NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. Retrieved from https://hdl.handle.net/10446/233871
File allegato/i alla scheda:
File Dimensione del file Formato  
1-s2.0-S0168900222009093-main.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 771.64 kB
Formato Adobe PDF
771.64 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/233871
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact