In the context of quantum-inspired machine learning, quantum state discrimination is a useful tool for classification problems. We implement a local approach combining the k-nearest neighbors algorithm with some quantum-inspired classifiers. We compare the performance with respect to well-known classifiers applied to benchmark datasets.
(2023). Quantum-Inspired Applications for Classification Problems [journal article - articolo]. In ENTROPY. Retrieved from https://hdl.handle.net/10446/239450
Quantum-Inspired Applications for Classification Problems
Bertini, Cesarino;Leporini, Roberto
2023-01-01
Abstract
In the context of quantum-inspired machine learning, quantum state discrimination is a useful tool for classification problems. We implement a local approach combining the k-nearest neighbors algorithm with some quantum-inspired classifiers. We compare the performance with respect to well-known classifiers applied to benchmark datasets.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
Quantum-Inspired Applications for Classification Problems.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
294.87 kB
Formato
Adobe PDF
|
294.87 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo