We show asymptotic expansions of the eigenfunctions of certain perturbations of the Jacobi operator in a bounded interval, deducing equiconvergence results between expansions with respect to the associated orthonormal basis and expansions with respect to the cosine basis. Several results for pointwise convergence then follow.

(2023). Equiconvergence for perturbed Jacobi polynomial expansions [journal article - articolo]. In JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. Retrieved from https://hdl.handle.net/10446/239949

Equiconvergence for perturbed Jacobi polynomial expansions

Gigante, Giacomo;
2023-01-01

Abstract

We show asymptotic expansions of the eigenfunctions of certain perturbations of the Jacobi operator in a bounded interval, deducing equiconvergence results between expansions with respect to the associated orthonormal basis and expansions with respect to the cosine basis. Several results for pointwise convergence then follow.
articolo
2023
Gigante, Giacomo; Jotsaroop, K.
(2023). Equiconvergence for perturbed Jacobi polynomial expansions [journal article - articolo]. In JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. Retrieved from https://hdl.handle.net/10446/239949
File allegato/i alla scheda:
File Dimensione del file Formato  
1-s2.0-S0022247X23001506-main.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 608.63 kB
Formato Adobe PDF
608.63 kB Adobe PDF   Visualizza/Apri
gigante-jotsarooprevised_3.pdf

embargo fino al 24/02/2025

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Creative commons
Dimensione del file 233.26 kB
Formato Adobe PDF
233.26 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/239949
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact