There exists a positive function psi(t) on t >= 0 with fast decay infinity such that for every measurable set Omega in the Euclidean space and R > 0 there exist entire functions A (x) and B (x) of exponential type R satisfying A(x) <= (chi Omega)(x) <= B(x) and |B(x) - A(x)| <= psi(R dist (x, boundary (Omega))). This leads to Erdos Turan estimates for discrepancy of point set distributions in the multi-dimensional torus. Analogous results hold for approximations by eigenfunctions of differential operators and discrepancy on compact manifolds.
Trigonometric approximation and a general form of the Erdos Turan inequality
GIGANTE, Giacomo;
2011-01-01
Abstract
There exists a positive function psi(t) on t >= 0 with fast decay infinity such that for every measurable set Omega in the Euclidean space and R > 0 there exist entire functions A (x) and B (x) of exponential type R satisfying A(x) <= (chi Omega)(x) <= B(x) and |B(x) - A(x)| <= psi(R dist (x, boundary (Omega))). This leads to Erdos Turan estimates for discrepancy of point set distributions in the multi-dimensional torus. Analogous results hold for approximations by eigenfunctions of differential operators and discrepancy on compact manifolds.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
tran5287.pdf
Solo gestori di archivio
Descrizione: publisher's version - versione dell'editore
Dimensione del file
523.79 kB
Formato
Adobe PDF
|
523.79 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo