Sustainable energy systems must be capable of ensuring sustainable development by providing affordable and reliable energy to consumers. Hence, knowledge and understanding of energy consumption in the residential sector are indispensable for energy preservation and energy efficiency which can only be possible with the help of consumer participation. New energy efficiency methods are developed due to the global adoption of smart meters that monitor and communicate residential energy consumption. Moreover, energy monitoring of each appliance is not feasible, as it is a costly solution. Therefore, energy consumption disaggregation is an answer for cost-cutting and energy saving. Contrary to the non-intrusive load monitoring (NILM) approaches, which are based on high-frequency power signals, we propose a data- driven algorithm that requires only a time-series energy meter dataset, a few appliances’ data, and energy consumption data from a consumer-based online questionnaire. Afterward, the proposed algorithm disaggregates whole house energy consumption into nine different energy consumption sectors such as lighting, kitchen, cooling, heating, etc. The energy consumption disaggregation algorithm is applied to datasets of 10 homes under experimentation. One of the homes provides us with the knowledge of 96.8% energy consumption, where only 28% knowledge is reported by monitoring plugs and 68% knowledge obtained by unmonitored means. Finally, the energy consumption obtained by the algorithm is compared with actual energy consumption, which shows the excellent functioning of the developed method.
(2022). Data Driven Disaggregation Method for Electricity Based Energy Consumption for Smart Homes . In JOURNAL OF PHYSICS. CONFERENCE SERIES. Retrieved from https://hdl.handle.net/10446/262653
Data Driven Disaggregation Method for Electricity Based Energy Consumption for Smart Homes
Re, Valerio
2022-01-01
Abstract
Sustainable energy systems must be capable of ensuring sustainable development by providing affordable and reliable energy to consumers. Hence, knowledge and understanding of energy consumption in the residential sector are indispensable for energy preservation and energy efficiency which can only be possible with the help of consumer participation. New energy efficiency methods are developed due to the global adoption of smart meters that monitor and communicate residential energy consumption. Moreover, energy monitoring of each appliance is not feasible, as it is a costly solution. Therefore, energy consumption disaggregation is an answer for cost-cutting and energy saving. Contrary to the non-intrusive load monitoring (NILM) approaches, which are based on high-frequency power signals, we propose a data- driven algorithm that requires only a time-series energy meter dataset, a few appliances’ data, and energy consumption data from a consumer-based online questionnaire. Afterward, the proposed algorithm disaggregates whole house energy consumption into nine different energy consumption sectors such as lighting, kitchen, cooling, heating, etc. The energy consumption disaggregation algorithm is applied to datasets of 10 homes under experimentation. One of the homes provides us with the knowledge of 96.8% energy consumption, where only 28% knowledge is reported by monitoring plugs and 68% knowledge obtained by unmonitored means. Finally, the energy consumption obtained by the algorithm is compared with actual energy consumption, which shows the excellent functioning of the developed method.File | Dimensione del file | Formato | |
---|---|---|---|
Hussain_2022_J._Phys. _Conf._Ser._2385_012006.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo