This paper contains an Lp improving result for convolution operators defined by singular measures associated to hypersurfaces on the motion group. This needs only mild geometric properties of the surfaces, and it extends earlier results on Radon type transforms on Rn. The proof relies on the harmonic analysis on the motion group.

Convolution operators defined by singular measures on the motion group

BRANDOLINI, Luca;GIGANTE, Giacomo;
2012-01-01

Abstract

This paper contains an Lp improving result for convolution operators defined by singular measures associated to hypersurfaces on the motion group. This needs only mild geometric properties of the surfaces, and it extends earlier results on Radon type transforms on Rn. The proof relies on the harmonic analysis on the motion group.
2012
Brandolini, Luca; Gigante, Giacomo; Thangavelu, Sundaram; Travaglini, Giancarlo
File allegato/i alla scheda:
File Dimensione del file Formato  
ms3_2012.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 395.94 kB
Formato Adobe PDF
395.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/26339
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact