This paper contains an L^p improving result for convolution operators defined by singular measures associated to hypersurfaces on the motion group. This needs only mild geometric properties of the surface, and it extends earlier results on Radon type transforms on R^n. The proof relies on the harmonic analysis on the motion group

Convolution operators defined by singular measures on the motion group

BRANDOLINI, Luca;GIGANTE, Giacomo;
2010-01-01

Abstract

This paper contains an L^p improving result for convolution operators defined by singular measures associated to hypersurfaces on the motion group. This needs only mild geometric properties of the surface, and it extends earlier results on Radon type transforms on R^n. The proof relies on the harmonic analysis on the motion group
journal article - articolo
2010
Brandolini, Luca; Gigante, Giacomo; Thangavelu, Sundaram; Travaglini, Giancarlo
File allegato/i alla scheda:
Non ci sono file allegati a questa scheda.
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/26519
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact