In recent years we are witnessing to an increased attention towards methods for clustering matrix-valued data. In this framework, matrix Gaussian mixture models constitute a natural extension of the model-based clustering strategies. Regrettably, the overparametrization issues, already affecting the vector-valued framework in high-dimensional scenarios, are even more troublesome for matrix mixtures. In this work we introduce a sparse model-based clustering procedure conceived for the matrix-variate context. We introduce a penalized estimation scheme which, by shrinking some of the parameters towards zero, produces parsimonious solutions when the dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the interpretation and providing richer insights on the analyzed dataset.
(2021). Model-based clustering with sparse matrix mixture models . Retrieved from https://hdl.handle.net/10446/269568
Model-based clustering with sparse matrix mixture models
Casa, Alessandro;
2021-01-01
Abstract
In recent years we are witnessing to an increased attention towards methods for clustering matrix-valued data. In this framework, matrix Gaussian mixture models constitute a natural extension of the model-based clustering strategies. Regrettably, the overparametrization issues, already affecting the vector-valued framework in high-dimensional scenarios, are even more troublesome for matrix mixtures. In this work we introduce a sparse model-based clustering procedure conceived for the matrix-variate context. We introduce a penalized estimation scheme which, by shrinking some of the parameters towards zero, produces parsimonious solutions when the dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the interpretation and providing richer insights on the analyzed dataset.File | Dimensione del file | Formato | |
---|---|---|---|
Cappozzo et al_CLADAG_2021.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
645.27 kB
Formato
Adobe PDF
|
645.27 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo