In recent years we are witnessing to an increased attention towards methods for clustering matrix-valued data. In this framework, matrix Gaussian mixture models constitute a natural extension of the model-based clustering strategies. Regrettably, the overparametrization issues, already affecting the vector-valued framework in high-dimensional scenarios, are even more troublesome for matrix mixtures. In this work we introduce a sparse model-based clustering procedure conceived for the matrix-variate context. We introduce a penalized estimation scheme which, by shrinking some of the parameters towards zero, produces parsimonious solutions when the dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the interpretation and providing richer insights on the analyzed dataset.

(2021). Model-based clustering with sparse matrix mixture models . Retrieved from https://hdl.handle.net/10446/269568

Model-based clustering with sparse matrix mixture models

Casa, Alessandro;
2021-01-01

Abstract

In recent years we are witnessing to an increased attention towards methods for clustering matrix-valued data. In this framework, matrix Gaussian mixture models constitute a natural extension of the model-based clustering strategies. Regrettably, the overparametrization issues, already affecting the vector-valued framework in high-dimensional scenarios, are even more troublesome for matrix mixtures. In this work we introduce a sparse model-based clustering procedure conceived for the matrix-variate context. We introduce a penalized estimation scheme which, by shrinking some of the parameters towards zero, produces parsimonious solutions when the dimensions increase. Moreover it allows cluster-wise sparsity, possibly easing the interpretation and providing richer insights on the analyzed dataset.
alessandro.casa@unibg.it
2021
Inglese
CLADAG 2021. Book of abstracts and short papers. 13th Scientific Meeting of the Classification and Data Analysis Group
Porzio Giovanni C.; Rampichini, Carla; Bocci, Chiara;
978-88-5518-340-6
128
280
283
cartaceo
online
Italy
Firenze
Firenze University Press
CLADAG 2021: 13th Scientific Meeting of the Classification and Data Analysis Group, Firenze, Italy, 9-11 September 2021
13th
Firenze, Italy
9-11 September 2021
Settore SECS-S/01 - Statistica
model-based clustering; penalized likelihood; sparse matrix estimation; EM-algorithm;
info:eu-repo/semantics/conferenceObject
3
Cappozzo, Andrea; Casa, Alessandro; Fop, Michael
1.4 Contributi in atti di convegno - Contributions in conference proceedings::1.4.01 Contributi in atti di convegno - Conference presentations
open
Non definito
273
(2021). Model-based clustering with sparse matrix mixture models . Retrieved from https://hdl.handle.net/10446/269568
File allegato/i alla scheda:
File Dimensione del file Formato  
Cappozzo et al_CLADAG_2021.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 645.27 kB
Formato Adobe PDF
645.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/269568
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact