Methods based on Reproducing Kernel Hilbert Spaces (RKHS) have proven to be a valuable tool for the identification of linear time-invariant systems in both discrete- and continuous-time. In particular, unlike most other techniques, they enable to systematically confer a priori desirable properties, such as stability, on the estimated models. However, existing RKHS methods mainly target impulse responses and, hence, do not extend well to the context of nonlinear systems. In this work, we propose a novel RKHS-based methodology for the identification of discrete-time nonlinear systems guaranteeing that the identified system is incrementally input-to-state stable (dISS). We model the identified system using a predictor function that, given past input and output samples, yields the output prediction at the next time instant. The predictor is selected from an RKHS by solving a constrained optimization problem that guarantees its dISS properties. The proposed approach is validated via numerical simulations. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
(2023). Kernel-Based Identification of Incrementally Input-to-State Stable Nonlinear Systems . Retrieved from https://hdl.handle.net/10446/272976
Kernel-Based Identification of Incrementally Input-to-State Stable Nonlinear Systems
Scandella, Matteo;
2023-01-01
Abstract
Methods based on Reproducing Kernel Hilbert Spaces (RKHS) have proven to be a valuable tool for the identification of linear time-invariant systems in both discrete- and continuous-time. In particular, unlike most other techniques, they enable to systematically confer a priori desirable properties, such as stability, on the estimated models. However, existing RKHS methods mainly target impulse responses and, hence, do not extend well to the context of nonlinear systems. In this work, we propose a novel RKHS-based methodology for the identification of discrete-time nonlinear systems guaranteeing that the identified system is incrementally input-to-state stable (dISS). We model the identified system using a predictor function that, given past input and output samples, yields the output prediction at the next time instant. The predictor is selected from an RKHS by solving a constrained optimization problem that guarantees its dISS properties. The proposed approach is validated via numerical simulations. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)File | Dimensione del file | Formato | |
---|---|---|---|
Scandella2023b - Kernel Based Identification of Incrementally Input to State Stable Nonlinear Systems.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
549.06 kB
Formato
Adobe PDF
|
549.06 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo