Human cardiac fibrotic tissues are characterized by a higher stiffness relative to healthy cardiac tissues. These tissues are unable to spontaneously contract and are subjected to passive mechanical stimulation during heart functionality. Moreover, scaffolds that can recapitulate the in vivo mechanical properties of the cardiac fibrotic tissues are lacking. Herein, this study aimed to design and fabricate mechanically stretchable bioartificial scaffolds with biomimetic composition and stiffness comparable to human cardiac fibrotic tissues. Poly( epsilon -caprolactone) (PCL) scaffolds with a stretchable mesh architecture were initially designed through structural and finite element method (FEM) analyses and subsequently fabricated by melt extrusion additive manufacturing (MEX). Scaffolds were surface functionalized by 3,4-dihydroxy-DL-phenylalanine (DOPA) polymerization (polyDOPA) to improve their interaction with natural polymers. Scaffold pores were then filled with different concentrations (5%, 7%, and 10% w/v) of gelatin methacryloyl (GelMA) hydrogels to support in vitro human cardiac fibroblasts (HCFs) 3D culture, thereby producing bioartificial PCL/GelMA scaffolds. Uniaxial tensile mechanical tests in static and dynamic conditions (1 Hz; 22% maximum strain) demonstrated that the bioartificial scaffolds had in vivo -like stretchability and similar stiffness to that of pathological cardiac tissue (tailored as a function of the number of PCL scaffold layers and GelMA hydrogel concentration). In vitro cell tests on bioartificial scaffolds using HCF-embedded GelMA hydrogels under static conditions displayed increasing cell viability, spreading, and cytoskeleton organization with decreasing GelMA hydrogel concentration. Moreover, alpha -smooth muscle actin ( alpha -SMA)-positive cells were detected after 7 days of culture in static conditions followed by another 7 days of culture in dynamic conditions and not in HCF-loaded scaffolds cultured in static conditions for 14 days. These results suggested that in vitro culture under cyclic mechanical stimulations could induce an HCF phenotypic switch into myofibroblasts.

(2024). 3D bioartificial stretchable scaffolds mimicking the mechanical hallmarks of human cardiac fibrotic tissue [journal article - articolo]. In INTERNATIONAL JOURNAL OF BIOPRINTING. Retrieved from https://hdl.handle.net/10446/275949

3D bioartificial stretchable scaffolds mimicking the mechanical hallmarks of human cardiac fibrotic tissue

Lavella, Mario;
2024-01-01

Abstract

Human cardiac fibrotic tissues are characterized by a higher stiffness relative to healthy cardiac tissues. These tissues are unable to spontaneously contract and are subjected to passive mechanical stimulation during heart functionality. Moreover, scaffolds that can recapitulate the in vivo mechanical properties of the cardiac fibrotic tissues are lacking. Herein, this study aimed to design and fabricate mechanically stretchable bioartificial scaffolds with biomimetic composition and stiffness comparable to human cardiac fibrotic tissues. Poly( epsilon -caprolactone) (PCL) scaffolds with a stretchable mesh architecture were initially designed through structural and finite element method (FEM) analyses and subsequently fabricated by melt extrusion additive manufacturing (MEX). Scaffolds were surface functionalized by 3,4-dihydroxy-DL-phenylalanine (DOPA) polymerization (polyDOPA) to improve their interaction with natural polymers. Scaffold pores were then filled with different concentrations (5%, 7%, and 10% w/v) of gelatin methacryloyl (GelMA) hydrogels to support in vitro human cardiac fibroblasts (HCFs) 3D culture, thereby producing bioartificial PCL/GelMA scaffolds. Uniaxial tensile mechanical tests in static and dynamic conditions (1 Hz; 22% maximum strain) demonstrated that the bioartificial scaffolds had in vivo -like stretchability and similar stiffness to that of pathological cardiac tissue (tailored as a function of the number of PCL scaffold layers and GelMA hydrogel concentration). In vitro cell tests on bioartificial scaffolds using HCF-embedded GelMA hydrogels under static conditions displayed increasing cell viability, spreading, and cytoskeleton organization with decreasing GelMA hydrogel concentration. Moreover, alpha -smooth muscle actin ( alpha -SMA)-positive cells were detected after 7 days of culture in static conditions followed by another 7 days of culture in dynamic conditions and not in HCF-loaded scaffolds cultured in static conditions for 14 days. These results suggested that in vitro culture under cyclic mechanical stimulations could induce an HCF phenotypic switch into myofibroblasts.
articolo
2024
Spedicati, Mattia; Tivano, Francesca; Zoso, Alice; Bei, Janira; Lavella, Mario; Carmagnola, Irene; Chiono, Valeria
(2024). 3D bioartificial stretchable scaffolds mimicking the mechanical hallmarks of human cardiac fibrotic tissue [journal article - articolo]. In INTERNATIONAL JOURNAL OF BIOPRINTING. Retrieved from https://hdl.handle.net/10446/275949
File allegato/i alla scheda:
File Dimensione del file Formato  
manuscript_ijb01438.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/275949
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact