In the present article, a model for penetrative convection in a fluid-saturated inclined porous medium is analyzed. Penetrative convection occurs when an unstably stratified fluid moves into a stably stratified region. In this study, it will be shown that the inclination of the layer plays a relevant role for the penetrative thermal convection of a fluid-saturated porous medium. The results reported in the literature for the limiting case of horizontal layer are recovered and the numerical results for the linear instability, obtained via the Chebyshev-τ method, show that the most destabilizing perturbations are the longitudinal and, as expected, the transverse ones destabilize only up to a certain critical inclination angle of the layer. Moreover, in the numerical analysis of the three-dimensional perturbations, we show that the longitudinal perturbations are the most destabilizing not only with respect to the transverse but also with respect to any general perturbation. We also give nonlinear stability results for the longitudinal perturbations via the weighted energy method.
(2023). The onset of penetrative convection in an inclined porous layer [journal article - articolo]. In INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER. Retrieved from https://hdl.handle.net/10446/280631
The onset of penetrative convection in an inclined porous layer
Carnevale, Mauro
2023-01-01
Abstract
In the present article, a model for penetrative convection in a fluid-saturated inclined porous medium is analyzed. Penetrative convection occurs when an unstably stratified fluid moves into a stably stratified region. In this study, it will be shown that the inclination of the layer plays a relevant role for the penetrative thermal convection of a fluid-saturated porous medium. The results reported in the literature for the limiting case of horizontal layer are recovered and the numerical results for the linear instability, obtained via the Chebyshev-τ method, show that the most destabilizing perturbations are the longitudinal and, as expected, the transverse ones destabilize only up to a certain critical inclination angle of the layer. Moreover, in the numerical analysis of the three-dimensional perturbations, we show that the longitudinal perturbations are the most destabilizing not only with respect to the transverse but also with respect to any general perturbation. We also give nonlinear stability results for the longitudinal perturbations via the weighted energy method.File | Dimensione del file | Formato | |
---|---|---|---|
1-s2.0-S0017931023006774-mai_Arnone.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
807.83 kB
Formato
Adobe PDF
|
807.83 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo