Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating reductions in the material budget of the detectors. Traditionally, the fractional radiation length (x/X0) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40–65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. Two regions of the module were surveyed and yielded average x/X0 values of (0.72 ± 0.05)% and (0.95 ± 0.09)%, which are compatible with empirical estimates for these regions computed from known material properties of 0.753% and 0.892%, respectively. Two types of higher-granularity maps of the fractional radiation length were produced, subdivided either into rectangular regions of uniform size, or polygonal-shaped regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material of the upgraded detector.
(2024). Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons [journal article - articolo]. In JOURNAL OF INSTRUMENTATION. Retrieved from https://hdl.handle.net/10446/288449
Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons
High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating reductions in the material budget of the detectors. Traditionally, the fractional radiation length (x/X0) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. In this paper, we present a method of direct measurement of the material budget of a CMS prototype module designed for the Phase-2 upgrade of the CMS detector using a 40–65 MeV positron beam. A total of 630 million events were collected at the Paul Scherrer Institut PiE1 experimental area using a three-plane telescope consisting of the prototype module as the central plane, surrounded by two MALTA monolithic pixel detectors. Fractional radiation lengths were extracted from scattering angle distributions using the Highland approximation for multiple scattering. A statistical technique recovered runs suffering from trigger desynchronisation, and several corrections were introduced to compensate for local inefficiencies related to geometric and beam shape constraints. Two regions of the module were surveyed and yielded average x/X0 values of (0.72 ± 0.05)% and (0.95 ± 0.09)%, which are compatible with empirical estimates for these regions computed from known material properties of 0.753% and 0.892%, respectively. Two types of higher-granularity maps of the fractional radiation length were produced, subdivided either into rectangular regions of uniform size, or polygonal-shaped regions of uniform material composition. The results bode well for the CMS Phase-2 upgrade modules, which will play a key role in the minimisation of the material of the upgraded detector.
Adam, W.; Bergauer, T.; Damanakis, K.; Dragicevic, M.; Frühwirth, R.; Steininger, H.; Beaumont, W.; Darwish, M. R.; Janssen, T.; Van Mechelen, P.; Bre...espandi
(2024). Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons [journal article - articolo]. In JOURNAL OF INSTRUMENTATION. Retrieved from https://hdl.handle.net/10446/288449
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/288449
Citazioni
0
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.