We study the error for quasi Monte Carlo quadrature rules on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Kintchine-Marcinkiewicz-Zygmund inequality and more recent suitable de finitions of Sobolev classes on metric measure spaces.
Discrepancy and numerical integration in Sobolev spaces on metric measure spaces
BRANDOLINI, Luca;GIGANTE, Giacomo;
2013-01-01
Abstract
We study the error for quasi Monte Carlo quadrature rules on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Kintchine-Marcinkiewicz-Zygmund inequality and more recent suitable de finitions of Sobolev classes on metric measure spaces.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
MS-05-13.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
348.23 kB
Formato
Adobe PDF
|
348.23 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo