We study the error for quasi Monte Carlo quadrature rules on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Kintchine-Marcinkiewicz-Zygmund inequality and more recent suitable de finitions of Sobolev classes on metric measure spaces.

Discrepancy and numerical integration in Sobolev spaces on metric measure spaces

BRANDOLINI, Luca;GIGANTE, Giacomo;
2013-01-01

Abstract

We study the error for quasi Monte Carlo quadrature rules on metric measure spaces adapted to a decomposition of the space into disjoint subsets. We consider both the error for a single given function, and the worst case error for all functions in a given class of potentials. The main tools are the classical Kintchine-Marcinkiewicz-Zygmund inequality and more recent suitable de finitions of Sobolev classes on metric measure spaces.
2013
Brandolini, Luca; Chen, William W. L.; Colzani, Leonardo; Gigante, Giacomo; Travaglini, Giancarlo
File allegato/i alla scheda:
File Dimensione del file Formato  
MS-05-13.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 348.23 kB
Formato Adobe PDF
348.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/29317
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact