We study the irregularities of distribution on two-point homogeneous spaces. Our main result is the following: let d be the real dimension of a two point homogeneous space, let {aj}j=1N,{xj}j=1N be a system of positive weights and points on and let (Forumala presented). be the discrepancy associated with the ball Br(x). Then, if d1(mod4), for any radius 0<r<π∕2, we obtain the sharp estimate ∫Dr(x)2+D2r(x)2dμ(x)cN−1−1d.

(2025). Irregularities of Distribution on Two-Point Homogeneous Spaces . Retrieved from https://hdl.handle.net/10446/295568

Irregularities of Distribution on Two-Point Homogeneous Spaces

Brandolini, Luca;Gariboldi, Bianca;Gigante, Giacomo
2025-01-01

Abstract

We study the irregularities of distribution on two-point homogeneous spaces. Our main result is the following: let d be the real dimension of a two point homogeneous space, let {aj}j=1N,{xj}j=1N be a system of positive weights and points on and let (Forumala presented). be the discrepancy associated with the ball Br(x). Then, if d1(mod4), for any radius 0
2025
Brandolini, Luca; Gariboldi, Bianca Maria; Gigante, Giacomo
File allegato/i alla scheda:
File Dimensione del file Formato  
1_merged.pdf

Solo gestori di archivio

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 497.85 kB
Formato Adobe PDF
497.85 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/295568
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact