We study the irregularities of distribution on two-point homogeneous spaces. Our main result is the following: let d be the real dimension of a two point homogeneous space, let {aj}j=1N,{xj}j=1N be a system of positive weights and points on and let (Forumala presented). be the discrepancy associated with the ball Br(x). Then, if d1(mod4), for any radius 0<r<π∕2, we obtain the sharp estimate ∫Dr(x)2+D2r(x)2dμ(x)cN−1−1d.
(2025). Irregularities of Distribution on Two-Point Homogeneous Spaces . Retrieved from https://hdl.handle.net/10446/295568
Irregularities of Distribution on Two-Point Homogeneous Spaces
Brandolini, Luca;Gariboldi, Bianca;Gigante, Giacomo
2025-01-01
Abstract
We study the irregularities of distribution on two-point homogeneous spaces. Our main result is the following: let d be the real dimension of a two point homogeneous space, let {aj}j=1N,{xj}j=1N be a system of positive weights and points on and let (Forumala presented). be the discrepancy associated with the ball Br(x). Then, if d1(mod4), for any radius 0File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
1_merged.pdf
Solo gestori di archivio
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
497.85 kB
Formato
Adobe PDF
|
497.85 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo