Generation of synthetic data can be a valuable tool for machine-learning tasks and, in general, managing large volumes of data. This paper presents a technique for creating synthetic data through Bayesian Generation, so that synthetic data maintain the original probability distribution and can be exploited for training Machine-Learning models in place of the original dataset. The paper presents the method and analyzes its impact on selected machine-learning models, by evaluating both the effectiveness and efficiency of the overall process.

(2024). Bayesian Generation of Synthetic Data . Retrieved from https://hdl.handle.net/10446/297625

Bayesian Generation of Synthetic Data

Fosci, Paolo;Psaila, Giuseppe;
2024-01-01

Abstract

Generation of synthetic data can be a valuable tool for machine-learning tasks and, in general, managing large volumes of data. This paper presents a technique for creating synthetic data through Bayesian Generation, so that synthetic data maintain the original probability distribution and can be exploited for training Machine-Learning models in place of the original dataset. The paper presents the method and analyzes its impact on selected machine-learning models, by evaluating both the effectiveness and efficiency of the overall process.
2024
Inglese
The 19th International Conference on Soft Computing Models in Industrial and Environmental Applications SOCO 2024
Quintián, H.; Jove, E.; Corchado, E.; Troncoso, Lora A.; Martínez Álvarez, F.; Pérez García, H.; Calvo Rolle, J.L.; Martínez de Pisón, F.J.; García Bringas, P.; Herrero Cosío, A.; Fosci, P.;
9783031750120
888 LNNS (Vol. 1)
181
193
cartaceo
online
Switzerland
Springer
SOCO 2024: 19th International Conference on Soft Computing Models in Industrial and Environmental Application; Salamanca, Spain, October 9-11, 2024
19
Salamanca (Spain)
9-11 Ottobre 2024
internazionale
contributo
Settore IINF-05/A - Sistemi di elaborazione delle informazioni
Generation of synthetic data; Bayesian Generation; Bayesian Networks; The YABaGen tool; Effectiveness and efficiency.
info:eu-repo/semantics/conferenceObject
4
Fosci, Paolo; Nieves, Javier; Psaila, Giuseppe; Bringas, Pablo Garcia
1.4 Contributi in atti di convegno - Contributions in conference proceedings::1.4.01 Contributi in atti di convegno - Conference presentations
reserved
Non definito
273
(2024). Bayesian Generation of Synthetic Data . Retrieved from https://hdl.handle.net/10446/297625
File allegato/i alla scheda:
File Dimensione del file Formato  
SOCO_2024 + frontmatter.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/297625
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact