We study the error in quadrature rules on a compact manifold. Our estimates are in the same spirit of the Koksma-Hlawka inequality and they depend on a sort of discrepancy of the sampling points and a generalized variation of the function. In particular, we give sharp quantitative estimates for quadrature rules of functions in Sobolev classes.
Quadrature rules and distribution of points on manifolds
BRANDOLINI, Luca;GIGANTE, Giacomo;
2014-01-01
Abstract
We study the error in quadrature rules on a compact manifold. Our estimates are in the same spirit of the Koksma-Hlawka inequality and they depend on a sort of discrepancy of the sampling points and a generalized variation of the function. In particular, we give sharp quantitative estimates for quadrature rules of functions in Sobolev classes.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
1-brandolini_etal.pdf
Solo gestori di archivio
Descrizione: publisher's version - versione dell'editore
Dimensione del file
743.75 kB
Formato
Adobe PDF
|
743.75 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo