The bond portfolio management problem is formulated as a stochastic program based on interest rate scenarios. It has been proved in Dupakovà (1998) that small errors in constructing scenarios will not destroy the optimal solution. The aim of the contribution is to quantify, through carefully planned simulation studies, the magnitude of the above-mentioned errors and to give bounds, at a specified confidence level, for the optimal gap between the value related to the optimal first-stage solution of the unperturbed problem and the "true" optimal value. Parallel computer numerical results are presented.

Highly parallel computing in simulation on dynamic bond portfolio management

MORIGGIA, Vittorio;BERTOCCHI, Maria;
1999-01-01

Abstract

The bond portfolio management problem is formulated as a stochastic program based on interest rate scenarios. It has been proved in Dupakovà (1998) that small errors in constructing scenarios will not destroy the optimal solution. The aim of the contribution is to quantify, through carefully planned simulation studies, the magnitude of the above-mentioned errors and to give bounds, at a specified confidence level, for the optimal gap between the value related to the optimal first-stage solution of the unperturbed problem and the "true" optimal value. Parallel computer numerical results are presented.
journal article - articolo
1999
Moriggia, Vittorio; Bertocchi, Maria; Dupačová, Jitka
File allegato/i alla scheda:
File Dimensione del file Formato  
327600.327725.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 562.53 kB
Formato Adobe PDF
562.53 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/49454
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact