We produce explicit low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a convex domain with positive curvature in R^2. The proof depends on simultaneous diophantine approximation and a general version of the Erdős–Turán inequality.
Low-discrepancy sequences for piecewise smooth functions on the two-dimensional torus
BRANDOLINI, Luca;GIGANTE, Giacomo;
2016-01-01
Abstract
We produce explicit low-discrepancy infinite sequences which can be used to approximate the integral of a smooth periodic function restricted to a convex domain with positive curvature in R^2. The proof depends on simultaneous diophantine approximation and a general version of the Erdős–Turán inequality.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
Brandolini, Gigante - Low-discrepancy sequences for piecewise smooth functions.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
482.7 kB
Formato
Adobe PDF
|
482.7 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo