The algorithm devised by Feige and Schechtman for partitioning higher dimensional spheres into regions of equal measure and small diameter is combined with David’s and Christ’s constructions of dyadic cubes to yield a partition algorithm suitable to any connected Ahlfors regular metric measure space of finite measure.
(2017). Diameter bounded equal measure partitions of Ahlfors regular metric measure spaces [journal article - articolo]. In DISCRETE & COMPUTATIONAL GEOMETRY. Retrieved from http://hdl.handle.net/10446/84257
Diameter bounded equal measure partitions of Ahlfors regular metric measure spaces
GIGANTE, Giacomo;
2017-01-01
Abstract
The algorithm devised by Feige and Schechtman for partitioning higher dimensional spheres into regions of equal measure and small diameter is combined with David’s and Christ’s constructions of dyadic cubes to yield a partition algorithm suitable to any connected Ahlfors regular metric measure space of finite measure.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
GL-Ahlfors-regular-partition-revised-aisberg.pdf
Open Access dal 02/11/2017
Versione:
postprint - versione referata/accettata senza referaggio
Licenza:
Licenza default Aisberg
Dimensione del file
95.24 kB
Formato
Adobe PDF
|
95.24 kB | Adobe PDF | Visualizza/Apri |
Gigante_2017_Ahlfors.pdf
Solo gestori di archivio
Versione:
publisher's version - versione editoriale
Licenza:
Licenza default Aisberg
Dimensione del file
318.79 kB
Formato
Adobe PDF
|
318.79 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo