We consider the discrepancy of the integer lattice with respect to the collection of all translated copies of a dilated convex body having a finite number of flat, possibly non-smooth, points in its boundary. We estimate the Lp norm of the discrepancy with respect to the translation variable, as the dilation parameter goes to infinity. If there is a single flat point with normal in a rational direction we obtain, for certain values of p, an asymptotic expansion for this norm. Anomalies may appear when two flat points have opposite normals. Our proofs depend on careful estimates for the Fourier transform of the characteristic function of the convex body.

(2020). Discrepancy for convex bodies with isolated flat points [journal article - articolo]. In REVISTA MATEMATICA IBEROAMERICANA. Retrieved from http://hdl.handle.net/10446/153559

Discrepancy for convex bodies with isolated flat points

Brandolini, Luca;Gariboldi, Bianca;Gigante, Giacomo;
2020-01-01

Abstract

We consider the discrepancy of the integer lattice with respect to the collection of all translated copies of a dilated convex body having a finite number of flat, possibly non-smooth, points in its boundary. We estimate the Lp norm of the discrepancy with respect to the translation variable, as the dilation parameter goes to infinity. If there is a single flat point with normal in a rational direction we obtain, for certain values of p, an asymptotic expansion for this norm. Anomalies may appear when two flat points have opposite normals. Our proofs depend on careful estimates for the Fourier transform of the characteristic function of the convex body.
articolo
2020
Brandolini, Luca; Colzani, Leonardo; Gariboldi, Bianca Maria; Gigante, Giacomo; Travaglini, Giancarlo
(2020). Discrepancy for convex bodies with isolated flat points [journal article - articolo]. In REVISTA MATEMATICA IBEROAMERICANA. Retrieved from http://hdl.handle.net/10446/153559
File allegato/i alla scheda:
File Dimensione del file Formato  
BCGGT-revista.pdf

accesso aperto

Versione: postprint - versione referata/accettata senza referaggio
Licenza: Licenza default Aisberg
Dimensione del file 517.71 kB
Formato Adobe PDF
517.71 kB Adobe PDF Visualizza/Apri
RMI-2020-036-006-01.pdf

Solo gestori di archivio

Versione: publisher's version - versione editoriale
Licenza: Licenza default Aisberg
Dimensione del file 326.71 kB
Formato Adobe PDF
326.71 kB Adobe PDF   Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/153559
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact