Let (M, g) be a d-dimensional compact connected Riemannian manifold and let {φm}m=0+∞ be a complete sequence of orthonormal eigenfunctions of the Laplace–Beltrami operator on M. We show that there exists a positive constant C such that for all integers N and X and for all finite sequences of N points in M, {x(j)}j=1N, and positive weights {aj}j=1N we have ∑m=0X|∑j=1Najφm(x(j))|2≥max{CX∑j=1Naj2,(∑j=1Naj)2}.

(2021). On a sharp lemma of Cassels and Montgomery on manifolds [journal article - articolo]. In MATHEMATISCHE ANNALEN. Retrieved from http://hdl.handle.net/10446/168638

On a sharp lemma of Cassels and Montgomery on manifolds

Brandolini, Luca;Gariboldi, Bianca;Gigante, Giacomo
2021-01-01

Abstract

Let (M, g) be a d-dimensional compact connected Riemannian manifold and let {φm}m=0+∞ be a complete sequence of orthonormal eigenfunctions of the Laplace–Beltrami operator on M. We show that there exists a positive constant C such that for all integers N and X and for all finite sequences of N points in M, {x(j)}j=1N, and positive weights {aj}j=1N we have ∑m=0X|∑j=1Najφm(x(j))|2≥max{CX∑j=1Naj2,(∑j=1Naj)2}.
articolo
2021
Brandolini, Luca; Gariboldi, Bianca Maria; Gigante, Giacomo
(2021). On a sharp lemma of Cassels and Montgomery on manifolds [journal article - articolo]. In MATHEMATISCHE ANNALEN. Retrieved from http://hdl.handle.net/10446/168638
File allegato/i alla scheda:
File Dimensione del file Formato  
Brandolini_et_al-2020-Mathematische_Annalen.pdf

accesso aperto

Versione: publisher's version - versione editoriale
Licenza: Creative commons
Dimensione del file 393.41 kB
Formato Adobe PDF
393.41 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10446/168638
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact