Let (M, g) be a d-dimensional compact connected Riemannian manifold and let {φm}m=0+∞ be a complete sequence of orthonormal eigenfunctions of the Laplace–Beltrami operator on M. We show that there exists a positive constant C such that for all integers N and X and for all finite sequences of N points in M, {x(j)}j=1N, and positive weights {aj}j=1N we have ∑m=0X|∑j=1Najφm(x(j))|2≥max{CX∑j=1Naj2,(∑j=1Naj)2}.
(2021). On a sharp lemma of Cassels and Montgomery on manifolds [journal article - articolo]. In MATHEMATISCHE ANNALEN. Retrieved from http://hdl.handle.net/10446/168638
On a sharp lemma of Cassels and Montgomery on manifolds
Brandolini, Luca;Gariboldi, Bianca;Gigante, Giacomo
2021-01-01
Abstract
Let (M, g) be a d-dimensional compact connected Riemannian manifold and let {φm}m=0+∞ be a complete sequence of orthonormal eigenfunctions of the Laplace–Beltrami operator on M. We show that there exists a positive constant C such that for all integers N and X and for all finite sequences of N points in M, {x(j)}j=1N, and positive weights {aj}j=1N we have ∑m=0X|∑j=1Najφm(x(j))|2≥max{CX∑j=1Naj2,(∑j=1Naj)2}.File allegato/i alla scheda:
File | Dimensione del file | Formato | |
---|---|---|---|
Brandolini_et_al-2020-Mathematische_Annalen.pdf
accesso aperto
Versione:
publisher's version - versione editoriale
Licenza:
Creative commons
Dimensione del file
393.41 kB
Formato
Adobe PDF
|
393.41 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
Aisberg ©2008 Servizi bibliotecari, Università degli studi di Bergamo | Terms of use/Condizioni di utilizzo